p38mapk and MEK1/2 inhibition contribute to cellular oxidant injury after hypoxia.
نویسندگان
چکیده
Lung epithelial cells produce increased reactive oxygen species (ROS) after hypoxia exposure, and they are more susceptible after hypoxia to injury by agents that generate superoxide [O2-; e.g., 2,3-dimethoxy-1,4-naphthoquinone (DMNQ)]. Cellular GSH and MnSOD both decrease in hypoxic lung epithelial cells, altering the redox state. Because ROS participate in signaling pathways involved in cell death or survival, we tested the hypothesis that mitogen-activated protein kinases (MAPK) were involved in a protective response against cellular injury during reoxygenation. Human lung epithelial A549 cells were incubated in hypoxia (<1% O2 for 24 h) and then reoxygenated by return to air. p38mapk and MKK3 phosphorylation both decreased after hypoxia. During reoxygenation, cells were incubated with DMNQ (0-50 microM), a redox cycling quinone that produces O2-. Hypoxia preexposure significantly increased epithelial cell lysis resulting from DMNQ. Addition of the p38mapk inhibitors SB-202190 or SB-203580 markedly increased cytotoxicity, as did the mitogen/extracellular signal-regulated kinase (MEK) 1/2 inhibitor PD-98059 (all 10 microM), suggesting a protective effect of downstream molecules activated by the kinases. Transfection of A549 cells with a dominant active MKK3 plasmid (MKK3[Glu]) partially inhibited cytolysis resulting from DMNQ, whereas the inactive MKK3 plasmid (MKK3[Ala]) had less evident protective effects. Stress-related signaling pathways in epithelial cells are modulated by hypoxia and confer protection from reoxygenation, since hypoxia and chemical inhibition of p38mapk and MEK1/2 similarly increase cytolysis resulting from O2-.
منابع مشابه
HIGHLIGHTED TOPIC Lung Growth and Repair Hypoxia-responsive growth factors upregulate periostin and osteopontin expression via distinct signaling pathways in rat pulmonary arterial smooth muscle cells
Li, Peng, Suzanne Oparil, Wenguang Feng, and Yiu-Fai Chen. Hypoxia-responsive growth factors upregulate periostin and osteopontin expression via distinct signaling pathways in rat pulmonary arterial smooth muscle cells. J Appl Physiol 97: 1550–1558, 2004. First published April 30, 2004; 10.1152/japplphysiol.01311.2003.— This study tested the hypothesis that expression of the novel adhesion mole...
متن کاملHydrogen Sulfide Protects against Chemical Hypoxia-Induced Injury by Inhibiting ROS-Activated ERK1/2 and p38MAPK Signaling Pathways in PC12 Cells
Hydrogen sulfide (H(2)S) has been proposed as a novel neuromodulator and neuroprotective agent. Cobalt chloride (CoCl(2)) is a well-known hypoxia mimetic agent. We have demonstrated that H(2)S protects against CoCl(2)-induced injuries in PC12 cells. However, whether the members of mitogen-activated protein kinases (MAPK), in particular, extracellular signal-regulated kinase1/2(ERK1/2) and p38MA...
متن کاملActivation of ERK1/2 pathway mediates oxidant-induced decreases in mitochondrial function in renal cells.
Previously, we showed that oxidant exposure in renal proximal tubular cells (RPTC) induces mitochondrial dysfunction mediated by PKC-epsilon. This study examined the role of ERK1/2 in mitochondrial dysfunction induced by oxidant injury and whether PKC-epsilon mediates its effects on mitochondrial function through the Raf-MEK1/2-ERK1/2 pathway. Sublethal injury produced by tert-butylhydroperoxid...
متن کاملReactive species mechanisms of cellular hypoxia-reoxygenation injury.
Exacerbation of hypoxic injury after restoration of oxygenation (reoxygenation) is an important mechanism of cellular injury in transplantation and in myocardial, hepatic, intestinal, cerebral, renal, and other ischemic syndromes. Cellular hypoxia and reoxygenation are two essential elements of ischemia-reperfusion injury. Activated neutrophils contribute to vascular reperfusion injury, yet pos...
متن کاملArginine vasopressin enhances cell survival via a G protein-coupled receptor kinase 2/β-arrestin1/extracellular-regulated kinase 1/2-dependent pathway in H9c2 cells.
Circulating levels of arginine vasopressin (AVP) are elevated during hypovolemia and during cardiac stress. AVP activates arginine vasopressin type 1A (V(1A))/Gα(q)-coupled receptors in the heart and vasculature and V(2)/Gα(s)-coupled receptors in the kidney. However, little is known regarding the signaling pathways that influence the effects of V(1A) receptor (V(1A)R) activation during cellula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 286 4 شماره
صفحات -
تاریخ انتشار 2004